Anatomy of an MLOps Pipeline - Part 1: Pipeline and Orchestration

Complete MLOps Series: Part 1 (current) | Part 2: Deployment → | Part 3: Production → Anatomy of an MLOps Pipeline - Part 1: Pipeline and Orchestration Why This Post Is Not Another Scikit-Learn Tutorial Most MLOps posts teach you how to train a Random Forest in a notebook and tell you “now put it in production.” This post assumes you already know how to train models. What you probably don’t know is how to build a system where: ...

January 13, 2026 · Carlos Daniel Jiménez

Anatomy of an MLOps Pipeline - Part 2: Deployment and Infrastructure

Complete MLOps Series: ← Part 1: Pipeline | Part 2 (current) | Part 3: Production → Anatomy of an MLOps Pipeline - Part 2: Deployment and Infrastructure 8. CI/CD with GitHub Actions: The Philosophy of Automated MLOps The Philosophical Foundation: Why Automation Isn’t Optional Before diving into YAML, let’s address the fundamental question: why do we automate ML pipelines? The naive answer is “to save time.” The real answer is more profound: because human memory is unreliable, manual processes don’t scale, and production systems demand reproducibility. ...

January 13, 2026 · Carlos Daniel Jiménez

📬 Did this help?

I write about MLOps, Edge AI, and making models work outside the lab. One email per month, max. No spam, no course pitches, just technical content.